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Abstract

Some basic properties of weak and weak∗ topologies are discussed,

especially in connection with convergence of sequences.

Contents

1 Seminorms 2

2 Weak topologies 3

3 Dual spaces 5

4 Some convergence theorems 6

5 The weak∗ topology 7

6 Sines and cosines 8

7 Finite-dimensional spaces 9

8 Metrizability 10

9 Completeness 11

10 Second duals 14

11 Separability 15

12 Uniform boundedness 15

13 ℓp Spaces 16

14 Convergence and norms 19

15 Continuous functions 20

1



16 The Banach–Alaoglu theorem 20

17 The dual of L∞ 21

18 Bounded continuous functions 24

19 Limits at infinity 25

20 Cauchy sequences 25

21 Uniform convexity 27

22 Weak compactness 28

23 Closed sets 30

References 31

1 Seminorms

Let V be a vector space over the real or complex numbers. A seminorm on V
is a nonnegative real-valued function N(v) on V such that

N(t v) = |t|N(v)(1.1)

for every v ∈ V and t ∈ R or C, as appropriate, and

N(v + w) ≤ N(v) + N(w)(1.2)

for every v, w ∈ V . Here |t| denotes the absolute value of t ∈ R, or the modulus
of t ∈ C. If N(v) > 0 when v 6= 0, then N is said to be a norm on V .

Suppose that N be a nonempty collection of seminorms on V . This leads
to a natural topology on V , in which U ⊆ V is an open set if for each v ∈ U
there are finitely many seminorms N1, . . . , Nl in N and finitely many positive
real numbers r1, . . . , rl such that

{w ∈ V : Nj(v − w) < rj for j = 1, . . . , l} ⊆ U.(1.3)

If N ∈ N , v ∈ V , and r > 0, then it is easy to see that

BN (v, r) = {w ∈ V : N(v − w) < r}(1.4)

is an open set in V with respect to this topology, using the triangle inequality.
By construction, the collection of all of these open balls with respect to elements
of N is a sub-base for the topology on V just defined. If N consists of a single
norm N , then this topology is the same as the one associated to the metric

d(v, w) = N(v − w)(1.5)
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corresponding to N on V .
Let us say that N is a nice collection of seminorms on V if for each v ∈ V with

v 6= 0 there is an N ∈ N such that N(v) > 0. This implies that the topology on
V just defined is Hausdorff, and also regular. By standard arguments, addition
and scalar multiplication on V are continuous with respect to the topology on V
associated to N , so that V becomes a topological vector space. More precisely,
V is a locally convex topological vector space, because the balls (1.4) are convex
sets in V . It is well known that the topology on any locally convex topological
vector space is determined by a collection of seminorms in this way.

Let λ be a linear functional on V , which is to say a linear mapping from V
into R or C, as appropriate. Suppose that λ is continuous with respect to the
topology determined on V by a collection N of seminorms on V . Thus

U = {w ∈ V : |λ(w)| < 1}(1.6)

is an open set in V that contains 0. This implies that there are finitely many
seminorms N1, . . . , Nl ∈ N and positive real numbers r1, . . . , rl such that

{w ∈ V : Nj(w) < rj for j = 1, . . . , l} ⊆ U,(1.7)

as in (1.3) with v = 0. Using this, one can check that

|λ(v)| ≤ C max(N1(v), . . . , Nl(v))(1.8)

for every v ∈ V , where C = max(1/r1, . . . , 1/rl). Conversely, if there are finitely
many seminorms N1, . . . , Nl in N and a nonnegative real number C such that
(1.8) holds for every v ∈ V , then λ is continuous on V with respect to the
topology determined by N . Of course, (1.8) implies that

|λ(v) − λ(w)| = |λ(v − w)| ≤ C max(N1(v − w), . . . , Nl(v − w))(1.9)

for every v, w ∈ V , because λ is linear.

2 Weak topologies

Let V be a vector space over the real or complex numbers again. If λ is any
linear functional on V , then

Nλ(v) = |λ(v)|(2.1)

defines a seminorm on V . Suppose that Λ is a nonempty collection of linear
functionals on V , and consider the corresponding collection

N (Λ) = {Nλ : λ ∈ Λ}(2.2)

of seminorms on V . The topology on V determined by N (Λ) as in the previous
section is known as the weak topology on V associated to Λ. Each λ ∈ Λ is
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automatically continuous with respect to this topology, and in fact this topology
is the weakest topology on V with this property.

Suppose that µ is a linear functional on V that is continuous with respect
to the topology determined by N (Λ). As in the previous section, this implies
that there are finitely many elements λ1, . . . , λn of Λ such that

|µ(v)| ≤ C max(|λ1(v)|, . . . , |λn(v)|)(2.3)

for some C ≥ 0 and every v ∈ V . Put

W = {v ∈ V : λj(v) = 0 for each j = 1, . . . , n},(2.4)

which is a linear subspace of V contained in the kernel of µ, by (2.3).
Under these conditions, it is well known that W has codimension less than

or equal to n in V , which is to say that the quotient vector space V/W has
dimension less than or equal to n. Using the linear functionals λ1, . . . , λn, one
can define a linear mapping from V into Rn or Cn, as appropriate, with kernel
equal to W . This leads to an injective linear mapping from V/W into Rn or Cn.
If λ1, . . . , λn are linearly independent, then one gets an isomorphism between
V/W and Rn or Cn. It is easy to reduce to this case, by dropping any λj that
can be expressed as a linear combination of the rest.

Because W is contained in the kernel of λj for each j, λj can be expressed
as the composition of the canonical quotient mapping from V onto V/W with

a linear functional λ̂j on V/W for every j = 1, . . . , n. Similarly, µ can be
expressed as the composition of the canonical quotient mapping from V onto
V/W with a linear functional µ̂ on V/W . Of course, every linear functional on
Rn or Cn is a linear combination of the coordinate functions, and in fact every
linear functional on any subspace of Rn or Cn can be expressed in this way too.
This implies that every linear functional on V/W can be expressed as a linear

combination of λ̂1, . . . , λ̂n, and in particular that µ̂ can be expressed in this way.
It follows that µ can be expressed as a linear combination of λ1, . . . , λn on V .

Any linear combination of finitely many elements of Λ is continuous on V
with respect to the topology determined by N (Λ), since every element of Λ is
continuous on V with respect to this topology. Thus the space of continuous
linear functionals on V with respect to the topology determined by N (Λ) is
spanned by Λ, by the argument in the previous paragraphs.

Let us say that Λ is a nice collection of linear functionals on V if for each
v ∈ V with v 6= 0 there is a λ ∈ Λ such that λ(v) 6= 0. This is the same as saying
that N (Λ) is a nice collection of seminorms on V , so that the corresponding
topology on V is Hausdorff. This is also equivalent to the condition that Λ
separate points in V .

Let N be any collection of seminorms on V , let {vj}
∞
j=1 be a sequence of

vectors in V , and let v be a vector in V . It is easy to see that {vj}∞j=1 converges
to v with respect to the topology on V determined by N as in the previous
section if and only if

lim
j→∞

N(vj − v) = 0(2.5)
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for each N ∈ N . In particular, this implies that

lim
j→∞

N(vj) = N(v)(2.6)

for each N ∈ N , by standard arguments. If Λ is a collection of linear functionals
on V again, then {vj}∞j=1 converges to v with respect to the topology determined
by N (Λ) if and only if

lim
j→∞

λ(vj) = λ(v)(2.7)

for each λ ∈ Λ.

3 Dual spaces

Let V be a real or complex vector space, equipped with a norm ‖v‖. Thus we
get a topology on V determined by the norm, and we let V ∗ be the space of
continuous linear functionals on V . This is also a vector space over the real or
complex numbers, as appropriate, with respect to pointwise addition and scalar
multiplication. The weak topology on V is defined to be the topology associated
to Λ = V ∗ as in the previous section. This definition also makes sense when the
topology on V is determined by a collection N of seminorms on V , or when V
is any topological vector space, but we shall be especially concerned with the
case where the topology on V is determined by a single norm here.

The weak topology on V is automatically weaker than the original topology
on V , in the sense that every open set in V with respect to the weak topology is
an open set in V with respect to the original topology. This follows from the fact
that every element of V ∗ is continuous on V with respect to the original topology
on V . However, if V is infinite-dimensional, and the original topology on V is
determined by a norm ‖v‖, then every open ball in V with respect to ‖v‖ is an
open set with respect to the original topology, but not with respect to the weak
topology. This is because every nonempty open set in V with respect to the weak
topology contains a translate of a linear subspace of V of finite codimension,
which cannot be bounded in V with respect to the norm when V is infinite-
dimensional. More precisely, any translate of any nontrivial linear subspace W
of V is unbounded with respect to the norm, and every linear subspace W of V
with finite codimension is nontrivial when V is infinite-dimensional.

As in Section 1, a linear functional λ on V is continuous with respect to the
topology determined by a norm ‖v‖ if and only if λ is bounded, in the sense
that

|λ(v)| ≤ C ‖v‖(3.1)

for some C ≥ 0 and every v ∈ V . Put

‖λ‖∗ = sup{|λ(v)| : v ∈ V, ‖v‖ ≤ 1},(3.2)

which is the same as the smallest value of C ≥ 0 for which (3.2) holds. One can
check that (3.2) defines a norm on V ∗, which is the dual norm associated to ‖v‖
on V .

5



Let N(v) be a seminorm on a real or complex vector space V , let W be a
linear subspace of V , and let λ be a linear functional on W that satisfies

|λ(v)| ≤ C N(v)(3.3)

for some C ≥ 0 and every v ∈ W . Under these conditions, the Hahn–Banach
theorem implies that there is an extension of λ to V that also satisfies (3.3),
with the same constant C. Using this, one can show that V ∗ separates points
in V when the topology on V is defined by a norm, or by a nice collection of
seminorms. If v ∈ V , v 6= 0, and ‖ · ‖ is a norm on V , then one can use this to
show that there is a λ ∈ V ∗ such that

λ(v) = ‖v‖(3.4)

and ‖λ‖∗ = 1.

4 Some convergence theorems

Let (X,A, µ) be a measure space, and let {fj}
∞
j=1 be a sequence of functions

in Lp(X) for some p, 1 ≤ p ≤ ∞. Suppose that the Lp norms of the fj ’s are
bounded Lp, so that

‖fj‖p ≤ C(4.1)

for some C ≥ 0 and every j ≥ 1. Suppose also that {fj}∞j=1 converges to a
function f pointwise almost everywhere on X. This implies that f ∈ Lp(X)
too, with ‖f‖p ≤ C.

If p > 1 and µ(X) < +∞, then it is well known that {fj}∞j=1 converges

to f with respect to the L1 norm under these conditions. This follows from
the bounded convergence theorem when p = ∞, and otherwise one can use an
analogous argument. The main point is that

∫

A

|fj | dµ ≤ Cµ(A)1−(1/p)(4.2)

for each measurable set A ⊆ X, by Hölder’s inequality, and similarly for f . If
p > 1, then 1 − (1/p) > 0, and it follows that the integral of |fj | or |f | is small
when µ(A) is small. The same proof also works when {fj}∞j=1 converges to f in
measure on X, instead of pointwise almost everywhere.

Now let 1 ≤ q ≤ ∞ be the exponent conjugate to p, so that 1/p + 1/q = 1,
and let g ∈ Lq(X) be given. If p = ∞, then {fj g}∞j=1 converges to f g with

respect to the L1 norm, by the dominated convergence theorem. The same
conclusion also holds when 1 < p < ∞, by an analogous argument. As before,

∫

A

|fj | |g| dµ ≤ C
(∫

A

|g|q dµ
)1/q

(4.3)

for every measurable set A ⊆ X, by Hölder’s inequality, and similarly for f in
place of fj . This implies that the integrals of |fj | |g| and |f | |g| over A are small
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when µ(A) is small, and that these integrals are small for some measurable sets
A ⊆ X such that µ(X \ A) < ∞. If X is σ-finite with respect to µ, then it
suffices to ask that {fj}

∞
j=1 converge to f in measure on measurable sets of finite

measure instead of pointwise almost everywhere. Of course, the set of x ∈ X
such that g(x) 6= 0 is automatically σ-finite when g ∈ Lq(X) for some q < ∞.

If g ∈ Lq(X) and 1 ≤ p, q ≤ ∞ are conjugate exponents, then Hölder’s
inequality implies that

λg(f) =

∫

X

f g dµ(4.4)

defines a bounded linear functional on Lp(X). If 1 < p < ∞, then it is well
known that every bounded linear functional on Lp(X) is of this form for some
g ∈ Lq(X). In this case, the discussion in the previous paragraph gives a
criterion for a sequence in Lp(X) to converge with respect to the weak topology.
One can also give examples of sequences in Lp(X) that satisfy these conditions
but do not converge with respect to the Lp norm.

5 The weak∗ topology

Let V be a real or complex vector space equipped with a norm ‖v‖, and let V ∗

be the corresponding dual space of countinuous linear functionals on V , as in
Section 3. Put

Lv(λ) = λ(v)(5.1)

for each v ∈ V and λ ∈ V ∗, which defines a linear functional on V ∗ for every
v ∈ V . As in Section 2, the collection of all of these linear functionals on V ∗

defines a topology on V ∗, known as the weak∗ topology on V ∗. This definition
also makes sense when the original topology on V is defined by a collection
of seminorms, or when V is any topological vector space, but we shall again
be especially concerned here with the case where the original topology on V is
determined by a single norm. If λ ∈ V ∗ and λ 6= 0, then there is a v ∈ V such
that λ(v) 6= 0, so that the collection of linear functionals on V ∗ of the form Lv

for some v ∈ V automatically separates points in V ∗.
Of course,

|Lv(λ)| = |λ(v)| ≤ ‖λ‖∗ ‖v‖(5.2)

for every v ∈ V and λ ∈ V ∗, by definition of the dual norm ‖λ‖∗ on V ∗. This
implies that Lv is a continuous linear functional on V ∗ for each v ∈ V , with
respect to the topology defined on V ∗ by the dual norm ‖λ‖∗. In particular,
every open set in V ∗ with respect to the weak∗ topology is also an open set with
respect to the topology defined by the dual norm.

If (X,A, µ) is a σ-finite measure space, then it is well known that every
bounded linear functional on L1(X) is of the form (4.4) for some g ∈ L∞(X).
The dual norm of such a linear functional λg on L1(X) is equal to the L∞ norm
of g, so that the dual of L1(X) is isometrically isomorphic to L∞(X). Suppose
that {gj}

∞
j=1 is a sequence of elements of L∞(X) with uniformly bounded L∞

norms, which converges pointwise almost everywhere on X to a function g.
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This implies that g ∈ L∞(X) too, and it would be enough to ask instead that
{gj}

∞
j=1 converges to g in measure on measurable subsets of X of finite measure.

If f ∈ L1(X), then the dominated convergence theorem implies that {f gj}
∞
j=1

converges to f g with respect to the L1 norm. In particular,

lim
j→∞

∫

X

f gj dµ =

∫

X

f g dµ(5.3)

for every f ∈ L1(X), which means that {gj}∞j=1 converges to g with respect to

the weak∗ topology on L∞(X) as the dual of L1(X) under these conditions. It
is easy to give examples of sequences in L∞(X) that satisfy these conditions
but do not converge with respect to the L∞ norm.

6 Sines and cosines

Let f be a real or complex-valued function on the unit interval [0, 1] that is
integrable with respect to Lebesgue measure, and put

f̂s(j) =

∫ 1

0

f(x) sin(2πjx) dx(6.1)

and

f̂c(j) =

∫ 1

0

f(x) cos(2πjx) dx(6.2)

for each positive integer j. Note that

|f̂s(j)|, |f̂c(j)| ≤

∫ 1

0

|f(x)| dx(6.3)

for each j, because | sin y|, | cos y| ≤ 1 for every y ∈ R. It is well known that

lim
j→∞

f̂s(j) = lim
j→∞

f̂c(j) = 0(6.4)

for every f ∈ L1([0, 1]). To see this, it suffices to check that (6.4) holds for all

f in a dense subset of L1([0, 1]), using (6.3) to estimate the effect on f̂s(j) and

f̂c(j) of approximations of f with respect to the L1 norm. If f ∈ L2([0, 1]), for

instance, then one can show that
∑∞

j=1 |f̂s(j)|
2 and

∑∞

j=1 |f̂c(j)|
2 converge, so

that their terms tend to 0 as j → ∞ in particular. This implies that (6.4) holds
for every f ∈ L1([0, 1]), beause L2([0, 1]) is dense in L1([0, 1]). Alternatively, if
f is the characteristic or indicator function of a subinterval of [0, 1], then one
can check directly that (6.4). Thus (6.4) holds when f is a step function on
[0, 1], by linearity, and hence when f is any integrable function on [0, 1], since
step functions are dense in L1([0, 1]).

Equivalently, (6.4) says that sin(2πjx) and cos(2πjx) converge to 0 as j → ∞
with respect to the weak∗ topology on L∞([0, 1]) as the dual of L1([0, 1]). If
we restrict our attention to f ∈ Lq([0, 1]) for some q > 1, then it follows that
sin(2πjx) and cos(2πjx) converge to 0 as j → ∞ with respect to the weak
topology on Lp([0, 1]) when 1 ≤ p < ∞, where p and q are conjugate exponents.
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7 Finite-dimensional spaces

Let V be a real or complex vector space, and let N(v) be a seminorm on V .
Observe that

N(v) ≤ N(w) + N(v − w)(7.1)

and
N(w) ≤ N(v) + N(v − w)(7.2)

for every v, w ∈ V , which implies that

|N(v) − N(w)| ≤ N(v − w)(7.3)

for every v, w ∈ V . In particular, it follows that N is continuous as a real-valued
function on V with respect to the topology determined by any collection N of
seminorms on V such that N ∈ N .

Suppose that V = Rn or Cn for some positive integer n, and let ‖v‖ be the
standard Euclidean norm on V , for instance. If N is any seminorm on V again,
then it is easy to see that

N(v) ≤ C ‖v‖(7.4)

for some C ≥ 0 and every v ∈ V . More precisely, this can be obtained by
expressing v as a linear combination of the standard basis vectors for V , and
then using the triangle inequality for N . This implies that N is continuous with
respect to the standard topology on V , because of (7.3).

If N is a norm on V , then we also have that

N(v) ≥ c ‖v‖(7.5)

for some c > 0 and every v ∈ V , which means that the topology on V determined
by N is the same as the standard topology. To see this, it suffices to show that

N(v) ≥ c(7.6)

for some c > 0 and every v ∈ V with ‖v‖ = 1, because of the homogeneity
properties of norms. It is well known that

{v ∈ V : ‖v‖ = 1}(7.7)

is compact with respect to the standard topology, because it is closed and
bounded. This implies that N(v) attains its minimum on (7.7), since N is
continuous with respect to the standard topology on V . Of course, N(v) > 0
for each v ∈ V with v 6= 0, so that the minimum of N on (7.7) is positive, as
desired.

If V is any real or complex vector space with finite positive dimension n, then
V is isomorphic as a vector space to Rn or Cn, as appropriate. The preceding
argument implies that any two norms on V determine the same topology on V ,
which corresponds to the standard topology on Rn or Cn.
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Let V be any real or complex vector space again. If N is a seminorm on V ,
then it is easy to see that

{v ∈ V : N(v) = 0}(7.8)

is a linear subspace of V .
Suppose that V is finite-dimensional, and that N is a nice collection of

seminorms on V . If V 6= {0}, then there is an N1 ∈ N such that N1(v) > 0 for
some v ∈ V . Put

V1 = {w ∈ V : N1(w) = 0},(7.9)

which is a proper linear subspace of V . If V1 = {0}, then N1 is a norm on
V , and we stop. Otherwise, if V1 6= {0}, then there is an N2 ∈ N such that
N2(v) > 0 for some v ∈ V1. In this case,

V2 = {w ∈ V1 : N2(w) = 0}(7.10)

is a proper linear subspace of V1. If V2 = {0}, then the maximum of N1 and
N2 is a norm on V , and we stop. Otherwise, if V2 6= {0}, then we continue the
process. After l steps, we have l seminorms N1, . . . , Nl ∈ N , and we take

Vl = {w ∈ V : Nj(v) = 0 for each j = 1, . . . , l}.(7.11)

If Vl = {0}, then the maximum of N1, . . . , Nl is a norm on V , and we stop.
The process has to stop after a finite number of steps less than or equal to the
dimension of V , because V1 is a proper linear subspace of V , and Vl is a proper
linear subspace of Vl−1 when l ≥ 2.

Thus there are finitely many seminorms N1, . . . , Nl in N such that

N(v) = max(N1(v), . . . , Nl(v))(7.12)

is a norm on V . Every other seminorm on V is bounded by a constant multiple
of N , by the earlier arguments. This implies that the topology on V determined
by the collection N is the same as the topology determined by N in this case.

8 Metrizability

Let V be a real or complex vector space, and let N be a nice collection of
seminorms on V . If N consists of a single element N , then N is a norm on V ,
and the topology on V determined by N is the same as the one defined by the
metric corresponding to N . Similarly, if N consists of finitely many seminorms
on V , then their maximum is a norm on V that determines the same topology.

Suppose that N consists of an infinite sequence of seminorms N1, N2, N3, . . .
on V . Put

dj(v, w) = min(Nj(v − w), 1/j)(8.1)

for every v, w ∈ V and j ≥ 1, and

d(v, w) = max
j≥1

dj(v, w)(8.2)
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for every v, w ∈ V . More precisely, if v = w, then dj(v, w) = 0 for every j, and
hence d(v, w) = 0. Otherwise, if v 6= w, then dl(v, w) > 0 for some l ≥ 1, and

dj(v, w) ≤ 1/j < dl(v, w)(8.3)

for all but finitely many j. This shows that the definition (8.2) of d(v, w) makes
sense for all v, w ∈ V , and that d(v, w) > 0 when v 6= w. It is easy to see that
d(v, w) is symmetric in v and w, because of the analogous property of dj(v, w)
for each j. One can also check that dj(v, w) satisfies the triangle inequality for
each j, and hence that d(v, w) satisfies the triangle inequality as well. Thus
d(v, w) defines a metric on V , which is invariant under translations on V by
construction. It is not too difficult to verify that the topology on V defined by
d(v, w) is the same as the one determined by N under these conditions. The
main point is that the open ball in V centered at v ∈ V with radius r is the
same as the intersection of the open balls in V centered at v with radius r with
respect to Nj for the finitely many j such that 1/j ≥ r.

Conversely, suppose that the topology on V determined by a nice collection
of seminorms N has a countable local base at 0. In this case, there is a subset of
N consisting of only finitely or countably many seminorms on V that determines
the same topology on V . This uses the fact that for each open set U ⊆ V with
0 ∈ U , there are finitely many seminorms N1, . . . , Nl ∈ N and finitely many
positive real numbers r1, . . . , rl such that

l⋂

j=1

BNj
(0, rj) ⊆ U.(8.4)

More precisely, if there is a countable local base for the topology of V at 0, then
it follows that only finitely or countably many elements of N are needed to get
such a base.

Now let Λ be a nice collection of linear functionals on V . If Λ has only finitely
or countably many elements, then the corresponding weak topology on V is also
determined by a translation-invariant metric on V , by the previous discussion.
Conversely, if there is a countable local base for the topology determined on V
by Λ at 0, then there is a subset Λ0 of Λ with only finitely or countably many
elements that determines the same topology on V , as before. Every element of
Λ is continuous on V with respect to this topology, which implies that every
element of Λ can be expressed as a linear combination of finitely many elements
of Λ0 under these conditions, as in Section 2.

9 Completeness

As usual, a metric space M is said to be complete if every Cauchy sequence of
elements of M converges to an element of M . Let V be a real or complex vector
space equipped with a norm ‖v‖, and let V ∗ be the dual space of continuous
linear functionals on V , equipped with the dual norm ‖λ‖∗. It is well known
that V ∗ is automatically complete with respect to the metric associated to ‖λ‖∗.
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To see this, let {λj}
∞
j=1 be a Cauchy sequence in V ∗ with respect to the dual

norm. Thus for each ǫ > 0 there is an L(ǫ) ≥ 1 such that

‖λj − λk‖∗ < ǫ(9.1)

for every j, k ≥ L(ǫ). This implies that

|λj(v) − λk(v)| ≤ ‖λj − λk‖∗ ‖v‖ ≤ ǫ ‖v‖(9.2)

for every v ∈ V and j, k ≥ L(ǫ). In particular, this means that {λk(v)}∞k=1 is
a Cauchy sequence in R or C, as appropriate, for each v ∈ V . It follows that
{λk(v)}∞k=1 converges in R or C for every v ∈ V , because the real and complex
numbers are complete with respect to their standard metrics. Put

λ(v) = lim
k→∞

λk(v)(9.3)

for each v ∈ V , which defines a linear functional on V , since λk is linear for each
k. Taking the limit as k → ∞ in (9.2), we get that

|λj(v) − λ(v)| ≤ ǫ ‖v‖(9.4)

for every v ∈ V and j ≥ L(ǫ). In particular,

|λ(v)| ≤ ‖v‖ + ‖λj(v)‖ ≤ (1 + ‖λj‖∗) ‖v‖(9.5)

for every v ∈ V and j ≥ L(1), which implies that λ is also a countinuous linear
functional on V . This permits (9.4) to be reformulated as saying that

‖λj − λ‖∗ ≤ ǫ(9.6)

for every j ≥ L(ǫ), so that {λj}
∞
j=1 converges to λ with respect to the dual norm

on V ∗, as desired.
Let M is a metric space, E be a dense subset of M , and f be a uniformly

continuous mapping from E into another metric space N . If N is complete,
then it is well known that there is a unique extension of f to a uniformly
continuous mapping from M into N . Now let V be a real or complex vector
space with a norm ‖v‖ again, and let W be a dense linear subspace of V . Also
let λ be a continuous linear functional on W , with respect to the restriction of
the norm ‖v‖ to v ∈ V . It is easy to see that λ is uniformly continuous as a
mapping from W into R or C, as appropriate, with respect to the metric on W
that corresponds to the norm. Thus λ has a unique extension to a uniformly
continuous mapping from V into R or C, as appropriate, because the real and
complex numbers are complete with respect to their standard metrics. One can
check that this extension is also linear, and that the dual norm of this extension
on V is the same as the dual norm of λ on W .

A real or complex vector space with a norm is said to be a Banach space if it
is complete with respect to the metric associated to the norm. It is well known
that any metric space can be isometrically embedded onto a dense subset of a
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complete metric space, and that such a completion is unique up to isometric
equivalence. Similarly, a real or complex vector space V with a norm ‖v‖ has a
linear isometric embedding onto a dense linear subspace of a Banach space, and
such a completion of V is unique up to a linear isometry. The dual of V and its
completion are essentially the same, by the remarks in the previous paragraph.

Let M be a metric space again, and let E be a subset of M . If E is complete
as a metric space with respect to the restriction of the metric on M to E, then
E is a closed set in M . This is because any sequence of elements of E that
converges to an element of M is a Cauchy sequence in E, and hence converges
to an element of E when E is complete. If M is complete and E is a closed set
in M , then E is also complete as a metric space with respect to the restriction
of the metric on M to E.

Of course, Rn and Cn are complete with respect to their standard metrics for
any positive integer n. This implies that Rn and Cn are complete with respect
to the metric associated to any norm on these spaces, because of the equivalence
with the standard norm, as in Section 7. It follows that any finite-dimensional
real or complex vector space with a norm is complete, since it is either trivial
or isomorphic to Rn or Cn for some positive integer n. This also implies that
finite-dimensional linear subspaces of a real or complex vector space V with a
norm are closed subsets of V , by the remarks in the preceding paragraph.

Let V be an infinite-dimensional real or complex Banach space, and suppose
for the sake of a contradiction that there is a sequence v1, v2, v3, . . . of vectors
in V such that every v ∈ V can be expressed as a linear combination of finitely
many vj ’s. Let Wn be the linear subspace of V spanned by v1, . . . , vn for each
positive integer n, so that Wn has finite dimension less than or equal to n for
each n, and

V =

∞⋃

n=1

Wn.(9.7)

As in the previous paragraph, Wn is a closed set in V for each n, and it is easy
to see that Wn cannot contain a nonempty open set in V for any n, because
Wn 6= V , since V is supposed to be infinite-dimensional. This contradicts the
Baire category theorem, since V is also supposed to be complete.

Let V be an infinite-dimensional real or complex vector space with a norm
again, and let V ∗ be the corresponding dual space, with the dual norm. As
in Section 3, the Hahn–Banach theorem implies that V ∗ separates points in
V , so that V ∗ must also be infinite-dimensional. We have seen that V ∗ is
automatically complete with respect to the dual norm, which implies that V ∗

cannot be spanned by a countable set, as in the previous paragraph. It follows
that the weak topology on V cannot be described by only countably many
elements of V ∗. In particular, there is no countable local base for the weak
topology on V at 0.

If V is an infinite-dimensional real or complex Banach space, then V cannot
be spanned by a countable set, as before. This implies that the weak∗ topology
on V ∗ cannot be described by countably many elements of V . More precisely,
this uses the fact that for each v ∈ V with v 6= 0, there is a λ ∈ V ∗ such that
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Lv(λ) = λ(v) 6= 0, by the Hahn–Banach theorem, so that the mapping v 7→ Lv

from V to linear functionals on V ∗ is injective. It follows that that there is no
countable local base for the weak∗ topology on V ∗ at 0 in this situation.

10 Second duals

Let V be a real or complex vector space with a norm ‖v‖, and let V ∗ be the
corresponding dual space, with the dual norm ‖λ‖∗. Similarly, let V ∗∗ be the
dual space of V ∗, consisting of all continuous linear functionals L on V ∗ with
respect to the topology on V ∗ defined by ‖λ‖∗. There is also a dual norm ‖L‖∗∗
on V ∗∗, which is the dual norm associated to the norm ‖λ‖∗ on V ∗. If v ∈ V ,
then Lv(λ) = λ(v) defines an element of V ∗, with

‖Lv‖∗∗ ≤ ‖v‖,(10.1)

by (5.2). Remember that for each v ∈ V with v 6= 0 there is a λ ∈ V ∗ such that
‖λ‖∗ = 1 and Lv(λ) = λ(v) = ‖v‖, as in Section 3. This implies that

‖Lv‖∗∗ = ‖v‖(10.2)

for every v ∈ V .
Of course, v 7→ Lv defines a linear mapping from V into V ∗∗. It is easy

to see that this mapping is also a homeomorphism from V equipped with the
weak topology onto its image in V ∗∗ with the topology induced by the weak∗

topology on V ∗∗, as the dual of V ∗. If V is complete with respect to the norm
‖v‖, then the image of V in V ∗∗ is complete with respect to the norm ‖L‖∗∗,
because of (10.2). This implies that the image of V is a closed set in V ∗∗ with
respect to the topology defined by the norm ‖L‖∗∗, as in the previous section.

A real or complex Banach space V is said to be reflexive if every element
of V ∗∗ is of the form Lv for some v ∈ V . If V has finite dimension, then
V ∗ and V ∗∗ have the same finite dimension, which implies that V is reflexive.
More precisely, v 7→ Lv is an injective linear mapping from V into V ∗∗ for
any V , and it follows that this mapping is also surjective when V and V ∗∗ are
finite-dimensional with the same dimension. It is well known that Lp spaces
are reflexive when 1 < p < ∞, and that Hilbert spaces are reflexive. If V is
reflexive, then the weak and weak∗ topologies on V ∗ are the same.

Suppose that V is a real or complex vector space with a norm ‖v‖ which is
not necessarily complete. Note that V ∗∗ is automatically complete with respect
to the norm ‖L‖∗∗, by the discussion in the previous section applied to V ∗

instead of V . If W is the closure of the image of V in V ∗∗ under the mapping
v 7→ Lv with respect to the topology defined by the norm ‖L‖∗∗, then W is
complete with respect to the restriction of ‖L‖∗∗ to L ∈ W , because V ∗∗ is
complete and W is a closed set in V ∗∗. Thus W may be used as a completion
of V . In particular, if every element of V ∗∗ is of the form Lv for some v ∈ V ,
then V is necessarily complete, since it is isometrically equivalent to V ∗∗, which
is complete. If V is not complete, then the dual of V is basically the same as
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the dual of the completion of V , as in the previous section. This implies that
the dual of the dual of V is also basically the same as for the completion.

11 Separability

Remember that a metric space M is said to be separable if there is a dense
set E ⊆ M with only finitely or countably many elements. Let V be a real
or complex vector space with a norm ‖v‖. In order for V to be separable as
a metric space, it suffices to have a set A ⊆ V with only finitely or countable
many elements whose linear span is dense in V . By definition, the linear span of
A in V is the set of all v ∈ V which can be expressed as a linear combination of
finitely many elements of A, which is also the smallest linear subspace of V that
contains A. If v1, . . . , vn are finitely many elements of V , then the collection of
v ∈ V that can be expressed as a linear combination of v1, . . . , vn with rational
coefficients is countable. Similarly, if V is a complex vector space, then the
set of v ∈ V that can be expressed as a linear combination of v1, . . . , vn with
coefficients whose real and imaginary parts are rational is also countable. If A
has only finitely or countably many elements, then one can use this to show
that the linear span of A has a countable dense subset. If the linear span of A
is also dense in V , then it follows that V is separable, as desired.

Suppose that B ⊆ V is bounded with respect to the norm ‖v‖, and that A
is a subset of the dual space V ∗ whose linear span is dense in V ∗ with respect
to the dual norm. Under these conditions, one can show that the topology on B
induced by the weak topology on V is the same as the topology on B induced
by the weak topology on V determined by the elements of A. In particular, if A
has only finitely or countably many elements, then it follows that the topology
on B induced by the weak topology on V is metrizable.

Similarly, suppose that A is a subset of V whose linear span is dense in V ,
and that B ⊆ V ∗ is bounded with respect to the dual norm on V ∗. Under these
conditions, one can show that the topology induced on B by the weak∗ topology
on V ∗ is the same as the topology on B induced by the weak topology on V ∗

defined by the linear functionals Lv(λ) = λ(v) with v ∈ A. If A has only finitely
or countably many elements, then it follows that the topology on B induced by
the weak∗ topology on V ∗ is metrizable.

12 Uniform boundedness

Let M be a metric space, and let E be a collection of real or complex-valued
continuous functions on M . Suppose that E is bounded pointwise on M , in the
sense that

E(x) = {f(x) : f ∈ E}(12.1)

is a bounded set in R or C for every x ∈ M . Equivalently, if

An = {x ∈ M : |f(x)| ≤ n for every f ∈ E}(12.2)
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for each positive integer n, then

∞⋃

n=1

An = M.(12.3)

Note that An is a closed set in M for each n, because every f ∈ E is continuous.
If M is complete, then the Baire category theorem implies that An contains a
nonempty open set in M for some n.

Now let V be a real or complex vector space with a norm ‖v‖, and let E
be a collection of continuous linear functionals on V . If V is complete, and if
E is pointwise bounded on M , then the previous argument implies that E is
uniformly bounded on a nonempty open set in V . Using linearity, one can show
that E is uniformly bounded on the unit ball in V . This is the same as saying
that the dual norms of the elements of E are bounded, so that E is a bounded
set in V ∗ with respect to the dual norm. This is part of the theorem of Banach
and Steinhaus.

Suppose now that A ⊆ V has the property that

A(λ) = {λ(v) : v ∈ A}(12.4)

is a bounded set in R or C for every λ ∈ V ∗. If Lv(λ) = λ(v) is the linear
functional on V ∗ corresponding to v ∈ V , then it follows that the collection of
Lv with v ∈ A is bounded pointwise on V ∗. Applying the previous argument
to V ∗ instead of V , we get that the set of Lv with v ∈ A is bounded in V ∗∗.
Note that this uses the completeness of V ∗, instead of V . This shows that A
is a bounded set in V under these conditions, since v 7→ Lv is an isometric
embedding of V into V ∗∗.

As an application, suppose that {λj}
∞
j=1 is a sequence of continuous linear

functionals on V that converges with respect to the weak∗ topology on V ∗. Thus
{λj(v)}∞j=1 is a convergent sequence of real or complex numbers for every v ∈ V ,
which implies that {λj(v)}∞j=1 is a bounded sequence in R or C for every v ∈ V .
If V is complete, then the Banach–Steinhaus theorem implies that {λj}∞j=1 is a
bounded sequence in V ∗ with respect to the dual norm. Similarly, if a sequence
{vj}

∞
j=1 of elements of V converges with respect to the weak topology on V , then

{λ(vj)}∞j=1 is a bounded sequence in R or C for every λ ∈ V ∗. This implies
that {vj}

∞
j=1 is bounded with respect to the norm on V , as in the preceding

paragraph.

13 ℓ
p Spaces

If f is a nonnegative real-valued function on a nonempty set X, then the sum
∑

x∈X

f(x)(13.1)

is defined to be the supremum of the sums
∑

x∈A

f(x)(13.2)
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over all nonempty finite subsets A of X. Of course, this is finite if and only if the
finite subsums (13.2) are bounded, in which case f is said to be summable on
X. Similarly, a real or complex-valued function f on X is said to be summable
if |f(x)| is summable on X. The sum (13.1) of a summable function on X may
be defined by expressing f as a linear combination of nonnegative real-valued
summable functions on X, or by reducing to the case of absolutely convergent
infinite series.

A real or complex-valued function f on X is said to be p-summable for some
p, 1 ≤ p < ∞, if |f(x)|p is a summable function on X. The space of p-summable
functions on X is denoted ℓp(X), and is a vector space with respect to pointwise
addition and scalar multiplication. It is well known that ℓp(X) is a Banach space
with the norm

‖f‖p =
( ∑

x∈X

|f(x)|p
)1/p

.(13.3)

Similarly, the space ℓ∞(X) of bounded real or complex-valued functions on X
is a Banach space with the supremum norm

‖f‖∞ = sup
x∈X

|f(x)|.(13.4)

Equivalently, X may be considered as a measure space with respect to counting
measure, in which all subsets of X are measurable, and ℓp(X) is the same as
the corresponding Lp space for each p, 1 ≤ p ≤ ∞.

Suppose that 1 ≤ p, q ≤ ∞ are conjugate exponents, so that 1/p + 1/q = 1.
If g ∈ ℓq(X), then

λg(f) =
∑

x∈X

f(x) g(x)(13.5)

defines a countinuous linear functional on ℓp(X), by Hölder’s inequality. It is
well known that every continuous linear functional on ℓp(X) is of this form when
1 ≤ p < ∞. Of course, this is easier to show than the analogous statement for
arbitrary measure spaces.

Let {fj}
∞
j=1 be a sequence of elements of ℓp(X) with bounded ℓp norm. If

{fj}
∞
j=1 converges pointwise to a function f on X, then f ∈ ℓp(X) too. If p > 1

and g ∈ ℓq(X), then

lim
j→∞

∑

x∈X

fj(x) g(x) =
∑

x∈X

f(x) g(x).(13.6)

This is a special case of the analogous statement for arbitrary measure spaces
discussed in Section 4, although the proof is simpler in this situation. As before,
this implies that {fj}∞j=1 converges to f with respect to the weak topology on
ℓp(X) when 1 < p < ∞, and with respect to the weak∗ topology on ℓ∞(X) as
the dual of ℓ1(X) when p = ∞.

Conversely, if {fj}∞j=1 is a sequence of elements of ℓp(X) that converges to
f ∈ ℓp(X) with respect to the weak topology, then the ℓp norms of the fj ’s
are necessarily bounded, as in the previous section. Weak convergence of the
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fj ’s also implies pointwise convergence here, as one can see by taking g to be
equal to 1 at a single point in X and zero elsewhere. Similarly, if {fj}

∞
j=1 is a

sequence of bounded functions on X that converges to a bounded function f on
X with respect to the weak∗ topology on ℓ∞(X) as the dual of ℓ1(X), then the
fj ’s have bounded ℓ∞ norms, and {fj}∞j=1 converges to f pointwise on X.

Let c0(X) be the space of real or complex-valued functions f(x) on X that
“vanish at infinity”, in the sense that

{x ∈ X : |f(x)| ≥ ǫ}(13.7)

has only finitely many elements for each ǫ > 0. One can check that c0(X) is a
closed linear subspace of ℓ∞(X) with respect to the supremum norm, and hence
a Banach space. If g ∈ ℓ1(X), then the restriction of (13.5) to f ∈ c0(X) is a
continuous linear functional on c0(X), and it is well known that every continuous
linear functional on c0(X) is of this form.

If {fj}∞j=1 is a sequence of summable functions on X with bounded ℓ1 norms
which converges pointwise to a function f on X, then f is a summable function
on X too. One can also show that (13.6) holds for every g ∈ c0(X), which is
analogous to the other convergence theorems mentioned earlier. This implies
that {fj}

∞
j=1 converges to f with respect to the weak∗ topology on ℓ1(X) as the

dual of c0(X) under these conditions. Conversely, if {fj}
∞
j=1 is a sequence of

summable functions on X that converges to a summable function f on X with
respect to the weak∗ topology on ℓ1(X) as the dual of c0(X), then the fj ’s have
bounded ℓ1 norms and converge to f pointwise on X, for essentially the same
reasons as before.

If a sequence {fj}
∞
j=1 of summable functions on X converges to a summable

function f on X with respect to the weak topology on ℓ1(X), then it is well
known that {fj}

∞
j=1 actually converges to f with respect to the ℓ1 norm. Of

course, this is trivial when X has only finitely many elements. Otherwise, one
may as well suppose that X is countably infinite, since summable functions on
X are supported on sets with only finitely or countably many elements. In fact,
it is helpful to simply take X to be the set Z+ of positive integers. One may
also suppose that f = 0 here, since otherwise one can replace fj with fj − f for
each j. As before, {fj}

∞
j=1 converges to 0 pointwise on X when it converges to

0 with respect to the weak topology on ℓ1(X). If {fj}∞j=1 does not converge to

0 with respect to the ℓ1 norm, then there is an ǫ > 0 such that

‖fj‖1 ≥ ǫ(13.8)

for infinitely many j. To get a contradiction, one can try to find a subsequence
{fjl

}∞l=1 of {fj}
∞
j=1 and a g ∈ ℓ∞(X) such that

∣∣∣∣
∑

x∈X

fjl
(x) g(x)

∣∣∣∣(13.9)

has a positive lower bound.
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14 Convergence and norms

Let V be a real or complex vector space with a norm ‖v‖, and let V ∗ be the
corresponding dual space, with the dual norm ‖λ‖∗. Let us check that the closed
ball

Br = {v ∈ V : ‖v‖ ≤ r}(14.1)

in V with center 0 and radius r ≥ 0 is a closed set in V with respect to the
weak topology. Observe first that

Br = {v ∈ V : |λ(v)| ≤ r for every λ ∈ V ∗ with ‖λ‖∗ ≤ 1},(14.2)

by the definition of the dual norm and the Hahn–Banach theorem. Of course,

{v ∈ V : |λ(v)| ≤ r}(14.3)

is a closed set in V with respect to the weak topology for every λ ∈ V ∗ and
r ≥ 0. This implies that Br is the intersection of a family of closed subsets of
V with respect to the weak topology, as desired.

Similarly, the closed ball

B∗
r = {λ ∈ V ∗ : ‖λ‖∗ ≤ r}(14.4)

in V ∗ with center 0 and radius r ≥ 0 is a closed set with respect to the weak∗

topology on V ∗. In this case,

B∗
r = {λ ∈ V ∗ : |λ(v)| ≤ r for every v ∈ V with ‖v‖ ≤ 1},(14.5)

simply by the definition of the dual norm ‖λ‖∗. As before,

{λ ∈ V ∗ : |λ(v)| ≤ r}(14.6)

is a closed set in V ∗ with respect to the weak∗ topology for every v ∈ V and
r ≥ 0. Thus B∗

r can be expressed as the intersection of a family of closed subsets
of V ∗ with respect to the weak∗ topology.

If {vj}
∞
j=1 is a sequence of vectors in V that converges to v ∈ V with respect

to the weak topology, and if ‖vj‖ ≤ r for some r ≥ 0 and every j, then it follows
that ‖v‖ ≤ r too. This can be refined a bit to get that

‖v‖ ≤ lim inf
j→∞

‖vj‖.(14.7)

Similarly, if {λj}
∞
j=1 is a sequence of continuous linear functionals on V that

converges to λ ∈ V ∗ with respect to the weak∗ topology, and if ‖λj‖∗ ≤ r for
some r ≥ 0 and each j, then ‖λ‖∗ ≤ r. This can also be refined a bit to get that

‖λ‖∗ ≤ lim inf
j→∞

‖λj‖∗.(14.8)

In both cases, if the sequence converges with respect to the topology defined by
the norm, then the sequence of norms converges to the norm of the limit.
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15 Continuous functions

Let X be a locally compact Hausdorff topological space, and let C0(X) be
the space of continuous real or complex-valued functions on X that vanish at
infinity, in the sense that for each ǫ > 0 there is a compact set K ⊆ X such that

|f(x)| < ǫ(15.1)

for every x ∈ X \ K. If X is compact, then this reduces to the space C(X) of
all continuous real or complex-valued functions on X. If X is equipped with
the discrete topology, then C0(X) is the same as the space c0(X) discussed in
Section 13. In any case, it is well known that C0(X) is a closed linear subspace
of the space Cb(X) of bounded continuous functions on X, with respect to the
supremum norm. In particular, C0(X) is a Banach space with respect to the
supremum norm.

A version of the Riesz representation theorem implies that the bounded
linear functionals on C0(X) correspond exactly to real or complex measures on
X with certain regularity properties. The dual norm of such a linear functional λ
is equal to the total variation of the corresponding measure µ on X. A bounded
linear functional λ on C0(X) is said to be nonnegative if λ(f) is a nonnegative
real number for every nonnegative real-valued function f on X. Nonnegative
bounded linear functionals on C0(X) correspond exactly to finite nonnegative
regular Borel measures on X.

Suppose that {fj}
∞
j=1 is a sequence of elements of C0(X) with uniformly

bounded supremum norms that converges to f ∈ C0(X) pointwise everywhere
on X. Using the representation of bounded linear functionals on C0(X) by Borel
measures on X mentioned in the previous paragraph and the dominated conver-
gence theorem, it follows that {fj}∞j=1 converges to f with respect to the weak
topology on C0(X) under these conditions. Conversely, if {fj}

∞
j=1 converges to

f with respect to the weak topology on C0(X), then the supremum norms of
the fj ’s must be uniformly bounded, as in Section 12. Weak convergence also
implies pointwise convergence in this case, because f 7→ f(x) is a continuous
linear functional on C0(X) for each x ∈ X.

16 The Banach–Alaoglu theorem

Let V be a real or complex vector space with a norm ‖v‖, and let V ∗ be its dual
space, with the dual norm ‖λ‖∗. The Banach–Alaoglu theorem states that the
closed unit ball

B∗ = {λ ∈ V ∗ : ‖λ‖∗ ≤ 1}(16.1)

in V ∗ is compact with respect to the weak∗ topology on V ∗. To prove this, one
can show that B∗ is homeomorphic with respect to the topology induced on B∗

by the weak∗ topology on V ∗ to a closed set in a product of closed intervals in
the real line or disks in the complex plane, and use Tychonoff’s theorem on the
compactness of products of compact sets.
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If V is separable, then the topology on B∗ induced by the weak∗ topology on
V ∗ is metrizable, as in Section 11. In this case, compactness of B∗ is equivalent
to sequential compactness, which can be shown more directly, as follows. Let
{λj}

∞
j=1 be a sequence of elements of B∗, and let v1, v2, v3, . . . be a sequence of

vectors in V whose linear span is dense in V . Thus {λj(vk)}∞j=1 is a bounded
sequence of real or complex numbers for each k, which implies that for each k
there is a subsequence of {λj(vk)}∞j=1 that converges in R or C, since closed
and bounded subsets of the real line and the complex plane are compact. Using
standard diagonalization arguments, one can check that there is a subsequence
{λjl

}∞l=1 of {λj}
∞
j=1 such that {λjl

(vk)}∞l=1 converges in R or C for every k.
It follows that {λjl

(v)}∞l=1 converges in R or C for every v ∈ V in the
linear span of v1, v2, v3, . . ., because of linearity. This implies that {λjl

(v)}∞l=1

is a Cauchy sequence in R or C for every v ∈ V , because the linear span of
v1, v2, v3, . . . is dense in V , and ‖λjl

‖∗ ≤ 1 for each l. Thus {λjl
(v)}∞l=1 converges

in R or C for every v ∈ V , by completeness. It is easy to see that

λ(v) = lim
l→∞

λjl
(v)(16.2)

defines a continuous linear functional on V with ‖λ‖∗ ≤ 1, because of the
corresponding properties of λjl

for each l. This says exactly that λ ∈ B∗ and
that {λjl

}∞l=1 converges to λ with respect to the weak∗ topology on V ∗, as
desired.

17 The dual of L
∞

Let (X,A, µ) be a measure space, and consider the corresponding space L∞(X)
of bounded real or complex-valued measurable functions on X, where two such
functions are identified when they are equal almost everywhere. It is well known
that L∞(X) is a Banach space with respect to the essential supremum norm
‖f‖∞. Suppose that λ is a continuous linear functional on L∞(X). Let 1A(x)
be the indicator or characteristic function of a set A ⊆ X, which is equal to 1
when x ∈ A and equal to 0 when x ∈ X\A. Thus 1A ∈ L∞(X) when A ⊆ X is
measurable, in which case we put

ν(A) = λ(1A).(17.1)

If A,B ⊆ X are measurable and A ∩ B = ∅, then

1A∪B = 1A + 1B ,(17.2)

and hence
ν(A ∪ B) = ν(A) + ν(B).(17.3)

This shows that ν is a finitely additive measure on A, and we also have that

ν(A) = 0 when µ(A) = 0,(17.4)

because 1A is identified with 0 in L∞(X) when µ(A) = 0.
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Suppose that A1, . . . , An are finitely many pairwise-disjoint measurable sub-
sets of X. If t1, . . . , tn are real or complex numbers, as appropriate, such that
|tj | ≤ 1 for each j, then

f(x) =

n∑

j=1

tj 1Aj
(x)(17.5)

is in L∞(X), and satisfies ‖f‖∞ ≤ 1. This implies that

|λ(f)| ≤ ‖λ‖∗,(17.6)

where ‖λ‖∗ denotes the dual norm of λ with respect to the L∞ norm. Of course,

λ(f) =

n∑

j=1

tj λ(1Aj
(x)) =

n∑

j=1

tj ν(Aj),(17.7)

so that ∣∣∣∣
n∑

j=1

tj ν(Aj)

∣∣∣∣ ≤ ‖λ‖∗,(17.8)

and hence
n∑

j=1

|ν(Aj)| ≤ ‖λ‖∗,(17.9)

using suitable choices of t1, . . . , tn.
Conversely, suppose that ν(A) is a real or complex-valued finitely-additive

measure defined for A ∈ A. This means that ν is a real or complex-valued
function on A that satisfies (17.3) when A, B are disjoint measurable subsets of
X. It is easy to see that there is a linear functional λ on the vector space of real
or complex-valued measurable simple functions on X such that (17.1) holds for
every measurable set A ⊆ X. If ν(A) = 0 for every measurable set A ⊆ X with
µ(A) = 0, then λ(f) = 0 when f is a measurable simple function on X that is
equal to 0 almost everywhere with respect to µ.

Suppose in addition that ν has finite total variation on X. This means that
there is a nonnegative real number C such that

n∑

j=1

|ν(Aj)| ≤ C(17.10)

for any collection A1, . . . , An of finitely many pairwise-disjoint measurable sub-
sets of X. This implies that

|λ(f)| ≤ C ‖f‖∞(17.11)

for every measurable simple function f on X, where λ is as in the preceding
paragraph. It follows that there is a unique extension of λ to a bounded linear
functional on L∞(X), as in Section 9, because simple functions are dense in
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L∞(X). Alternatively, λ(f) may be considered as a type of integral of f with
respect to ν when f ∈ L∞(X), which amounts to essentially the same thing.

Let ν be a real or complex-valued finitely additive measure on A with finite
total variation again. The corresponding total variation measure is defined by

|ν|(A) = sup

n∑

j=1

|ν(Aj)|(17.12)

for each measurable set A ⊆ X, where the supremum is taken over all finite
collections A1, . . . , An of pairwise-disjoint measurable subsets of X such that

A =

n⋃

j=1

Aj .(17.13)

It is easy to see that this is a nonnegative real-valued finitely additive measure
on A, and that |ν|(X) is the same as the smallest constant C for which (17.10)
holds. If ν(A) = 0 for every measurable set A ⊆ X such that µ(A) = 0, then |ν|
has the same property. Note that any nonnegative real-valued finitely-additive
measure on A has finite total variation on X.

Let λ be a continuous linear functional on L∞(X), and let A1, . . . , An be
finitely many pairwise-disjoint measurable subsets of X. Also let f1, . . . , fn be
elements of L∞(X) such that ‖fj‖∞ ≤ 1 for each j, and fj(x) 6= 0 only when
x ∈ Aj . If t1, . . . , tn are real or complex numbers, as appropriate, such that
|tj | ≤ 1 for each j, then

f(x) =

n∑

j=1

tj fj(x)(17.14)

satisfies ‖f‖∞ ≤ 1. Thus

λ(f) =

n∑

j=1

tj λ(fj)(17.15)

satisfies |λ(f)| ≤ ‖λ‖∗, which implies that

n∑

j=1

|λ(fj)| ≤ ‖λ‖∗,(17.16)

using suitable choices of t1, . . . , tn.
Suppose now that A1, A2, A3, . . . is an infinite sequence of pairwise disjoint

measurable subsets of X, and that f1, f2, f3, . . . is a sequence of elements of
L∞(X) such that ‖fj‖∞ ≤ 1 for each j, and fj(x) 6= 0 only when x ∈ Aj . The
previous discussion implies that

∞∑

j=1

|λ(fj)| ≤ ‖λ‖∗,(17.17)

and hence that λ(fj) → 0 as j → ∞. It follows that {fj}
∞
j=1 converges to 0 with

respect to the weak topology on L∞(X) under these conditions. In particular,
one can apply this to fj = 1Aj

, which has L∞ norm equal to 1 when µ(Aj) > 0.
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18 Bounded continuous functions

Let us begin with a remark about weak topologies and subspaces. Suppose that
V is a real or complex vector space with a norm ‖v‖, and that W is a linear
subspace of V . If λ is a continuous linear functional on V , then the restriction
of λ to W is a continuous linear functional on W . Conversely, every continuous
linear functional on W is of this form, by the Hahn–Banach theorem. This
implies that the weak topology on W is the same as the topology induced on
W by the weak topology on V .

Now let X be a topological space, and let Cb(X) be the space of bounded
continuous real or complex-valued functions on X. It is well known that Cb(X)
is a Banach space with respect to the supremum norm. Suppose that µ is a
nonnegative Borel measure on X such that µ(X) > 0 for every nonempty open
set U ⊆ X. This implies that the supremum norm of f ∈ Cb(X) is equal to
the L∞ norm of f with respect to µ, so that Cb(X) may be identified with a
closed linear subspace of L∞(X) with respect to µ under these conditions. In
particular, the weak topology on Cb(X) is the same as the topology induced on
Cb(X) by the weak topology on L∞(X), as in the previous paragraph. If X is
equipped with the discrete topology, then every function on X is continuous,
and Cb(X) is the same as ℓ∞(X). In this case, one can take µ to be counting
measure on X, where every subset of X is measurable, and ℓp(X) is the same
as Lp(X) for each p, including p = ∞.

Let X be any topological space again, and let us take Cb(X) to be the algebra
of bounded continuous complex-valued functions on X. This is a commutative
C∗-algebra, using complex conjugation as the involution. It is well known that
Cb(X) is isomorphic as a commutative C∗-algebra to the algebra C(Y ) of all
continuous complex-valued functions on a compact Hausdorff topological space
Y , known as the Stone–Čech compactification of X. Of course, one can simply
take Y = X when X is a compact Hausdorff space. If X is a locally compact
Hausdorff space which is not compact, then X is homeomorphic to a dense open
set in Y , and every bounded continuous complex-valued function on X can be
extended to a continuous function on Y .

Now let (X,A, µ) be a measure space with µ(X) > 0, and let L∞(X) be
the usual space of complex-valued bounded measurable functions on X, where
two such functions are identified when they are equal almost everywhere on X.
This is also a commutative C∗-algebra with respect to pointwise multiplication
of functions, and using complex conjugation as the involution. It follows that
L∞(X) is isomorphic as a C∗-algebra to the space of continuous complex-valued
functions on a compact Hausdorff topological space Z. In particular, the dual of
L∞(X) can be identified with the dual of C(Z), which can be characterized in
terms of regular Borel measures on Z. If X is equipped with counting measure,
then this is the same as the Stone–Čech compatification of X as a topological
space with the discrete topology.
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19 Limits at infinity

Let X be a locally compact Hausdorff topological space which is not compact,
and let f be a continuous real or complex-valued function on X. We say that
f(x) tends to a real or complex number a as x tends to infinity in X if for each
ǫ > 0 there is a compact set K ⊆ X such that

|f(x) − a| < ǫ(19.1)

for every x ∈ X\K. This reduces to the condition that f(x) vanish at infinity
on X when a = 0, and is equivalent to asking that f(x) − a vanish at infinity
on X for any a. Note that the limit a of f(x) as x → ∞ on X is unique when
it exists, because X is not compact.

It is well known that C0(X) is a closed linear subspace of Cb(X) with respect
to the supremum norm. Similarly, the space of continuous real or complex-
valued functions on X that have a limit at infinity is a closed linear subspace
of Cb(X), and in fact a closed subalgebra of Cb(X) with respect to pointwise
multiplication. This is the same as the collection of continuous functions on
X that have a continuous extension to the one-point compactification of X.
In particular, if X is an infinite set with the discrete topology, then Cb(X) =
ℓ∞(X), C0(X) = c0(X), and the space of functions on X with a limit at infinity
may be denoted c(X). If X = Z+, then c = c(Z+) consists of the real or
complex-valued functions f(x) on Z+ that have a limit as x → ∞ in the usual
sense, and c0 = c0(Z+) is the subspace of these functions for which the limit is
equal to 0.

Let fj(x) be the function on X = Z+ defined by fj(x) = 1 when x ≤ j
and fj(x) = 0 when x > j for each positive integer j, and put f(x) = 1 for
every x ∈ Z+. Thus fj ∈ c0 for each j, f ∈ c, and {fj(x)}∞j=1 converges to
f(x) for every x ∈ Z+. Remember that the dual of c0 may be identified with
ℓ1 = ℓ1(Z+), and that the dual of ℓ1 may be identified with ℓ∞ = ℓ∞(Z+). The
obvious inclusion of c0 in ℓ∞ corresponds exactly to the standard inclusion of
c0 in its second dual with respect to these identifications. As in Section 13, the
sequence {fj}

∞
j=1 converges to f with respect to the weak∗ topology on ℓ∞ as

the dual of ℓ1. In this case, this follows from the definition of the sum of an
infinite series as the limit of the sequence of partial sums. However, {fj}

∞
j=1 does

not converge to f with respect to the weak topology on c, because the mapping
from an element of c to its limit at infinity is a continuous linear functional
on c. It follows that {fj}

∞
j=1 does not converge to f with respect to the weak

topology on ℓ∞, by the remark at the beginning of the previous section.

20 Cauchy sequences

Let V be a real or complex vector space, and let N be a nice collection of
seminorms on V . A sequence {vj}

∞
j=1 of elements of V is said to be a Cauchy

sequence in V if
lim

j,l→∞
N(vj − vl) = 0(20.1)
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for each N ∈ N . It is easy to see that {vj}
∞
j=1 is a Cauchy sequence in V when

it converges to an element of V with respect to the topology determined by N ,
as usual. If N consists of a single norm N , then this Cauchy condition is the
same as the usual one for the metric associated to N .

Equivalently, {vj}∞j=1 is a Cauchy sequence in V if for any open set U in V
that contains 0, there is an L ≥ 1 such that

vj − vl ∈ U(20.2)

for every j, l ≥ L. This definition makes sense for any topological vector space
V . If the topology on V is determined by a translation-invariant metric d(w, z),
then this is the same as saying that {vj}

∞
j=1 is a Cauchy sequence with respect

to d(w, z). Let us say that V is sequentially complete if every Cauchy sequence
of elements of V converges to an element of V . One might simply say that
V is complete when V is sequentially complete and there is a countable local
base for the topology of V at 0, but otherwise one should also consider Cauchy
conditions for nets or filters on V .

Now let V be a vector space with a norm ‖v‖, and let V ∗ be the corresponding
dual space, with the dual norm ‖λ‖∗. A sequence {λj}

∞
j=1 of elements of V ∗

is a Cauchy sequence with respect to the weak∗ topology on V if and only if
{λj(v)}∞j=1 is a Cauchy sequence in R or C, as appropriate, for every v ∈ V .
This implies that {λj(v)}∞j=1 converges in R or C for every v ∈ V , since R and
C are complete, so that

λ(v) = lim
j→∞

λj(v)(20.3)

defines a linear functional on V . If V is a Banach space, then there is a C ≥ 0
such that

‖λj‖∗ ≤ C(20.4)

for each j, by the Banach–Steinhaus theorem. Equivalently,

|λj(v)| ≤ C ‖v‖(20.5)

for every v ∈ V and j ≥ 1, which implies that

|λ(v)| ≤ C ‖v‖(20.6)

for every v ∈ V . Thus λ ∈ V ∗ under these conditions, and hence {λj}
∞
j=1

converges to λ with respect to the weak∗ topology on V ∗. This shows that V ∗

is sequentially complete with respect to the weak∗ topology on V ∗ when V is a
Banach space.

Let V be a real or complex vector space with a norm ‖v‖ again. Suppose
that {vj}∞j=1 is a sequence of elements of V which is a Cauchy sequence with
respect to the weak topology on V . This means that {λ(vj)}

∞
j=1 is a Cauchy

sequence in R or C for every λ ∈ V ∗, which implies that {λ(vj)}
∞
j=1 converges

for every λ ∈ V ∗, because R and C are complete. If

Lj(λ) = Lvj
(λ) = λ(vj)(20.7)
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for each j, then it follows that {Lj}
∞
j=1 is a Cauchy sequence in V ∗∗, with respect

to the weak∗ topology on V ∗∗ as the dual of V ∗. Because V ∗ is automatically
complete with respect to the dual norm, the argument in the previous paragraph
implies that {Lj}

∞
j=1 converges to some L ∈ V ∗∗ with respect to the weak∗

topology on V ∗∗. If L(λ) = Lv(λ) = λ(v) for some v ∈ V and every λ ∈ V ∗, then
it follows that {vj}

∞
j=1 converges to v ∈ V with respect to the weak topology on

V . In particular, V is sequentially complete with respect to the weak topology
when V is a reflexive Banach space.

21 Uniform convexity

Let V be a real or complex vector space. A norm ‖v‖ on V is said to be uniformly

convex if for each ǫ > 0 there is a δ = δ(ǫ) > 0 such that for each v, w ∈ V with
‖v‖ = ‖w‖ = 1 and ∥∥∥

v + w

2

∥∥∥ > 1 − δ,(21.1)

we have that
‖v − w‖ < ǫ.(21.2)

Of course, ∥∥∥
v + w

2

∥∥∥ ≤
‖v‖ + ‖w‖

2
≤ 1(21.3)

when ‖v‖ = ‖w‖ = 1, so that the point of (21.1) is for the norm of (v + w)/2 to
be close to the maximum. Equivalently, for each v, w ∈ V with ‖v‖ = ‖w‖ = 1
and ‖v − w‖ ≥ ǫ, one should have that

∥∥∥
v + w

2

∥∥∥ ≤ 1 − δ.(21.4)

If the norm ‖·‖ is determined by an inner product on V , then one can check that
‖ · ‖ is uniformly convex, using the parallelogram law. It is well known that Lp

norms are uniformly convex when 1 < p < ∞, as a consequence of inequalities
due to Clarkson. It is easy to see that this does not work when p = 1 or ∞,
even on R2, basically because of a lack of strict convexity.

Let v ∈ V with ‖v‖ = 1 be given, and let λ be a continuous linear functional
on V such that ‖λ‖∗ = 1 and λ(v) = 1. Remember that such a linear functional
exists, by the Hahn–Banach theorem. If w ∈ V and ‖w‖ = 1 too, then

∥∥∥
v + w

2

∥∥∥ ≥

∣∣∣∣λ
(v + w

2

)∣∣∣∣ =
1

2
|λ(v) + λ(w)| =

1

2
|1 + λ(w)|.(21.5)

Using the triangle inequality, we get that

1 ≤
1

2
|1 + λ(w)| +

1

2
|1 − λ(w)|,(21.6)

so that ∥∥∥
v + w

2

∥∥∥ ≥ 1 −
1

2
|1 − λ(w)|.(21.7)
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If ‖ · ‖ is uniformly convex, then it follows that ‖v−w‖ → 0 as λ(w) → 1. More
precisely, this also works when ‖ · ‖ is “locally uniformly convex” at v, in the
sense that for each ǫ > 0 there is a δ > 0 such that (21.2) holds for every w ∈ V
that satisfies ‖w‖ = 1 and (21.1). This is the same as the uniform convexity
condition in the previous paragraph, except that δ is allowed to depend on v as
well as ǫ.

This shows that the topology on the unit sphere

{v ∈ V : ‖v‖ = 1}(21.8)

induced by the weak topology on V is the same as the topology determined by
the restriction of the metric associated to the norm ‖ · ‖ on (7.7) when ‖ · ‖ is
locally uniformly convex at every point in (21.8). In particular, if {vj}

∞
j=1 is a

sequence of vectors in V that converges with respect to the weak topology on
V to v ∈ V , if ‖vj‖ = ‖v‖ = 1 for each j, and if ‖ · ‖ is locally uniformly convex
at v, then it follows that {vj}

∞
j=1 converges to v with respect to the norm on V .

Similarly, if {vj}
∞
j=1 is a sequence of vectors in V that converges with respect

to the weak topology on V to v ∈ V and satisfies

lim
j→∞

‖vj‖ = ‖v‖,(21.9)

and if ‖ · ‖ is locally uniformly convex at each point in the unit sphere (21.8),
then {vj}

∞
j=1 converges to v with respect to the norm on V . This is trivial

when v = 0, and otherwise this can be derived from the previous statement
by dividing the vectors by their norms. The case where V is an Lp space with
1 < p < ∞ is known as the Radon–Riesz theorem.

As a counterexample for p = 1, one can take

fj(x) = 1 + cos(2πjx)(21.10)

on [0, 1] for each positive integer j, which converges with respect to the weak
topology on L1([0, 1]) to the constant function equal to 1 on [0, 1]. It is easy
to see that the L1 norm of fj is equal to 1 on [0, 1] for each j, using the fact
that fj(x) ≥ 0 for every x ∈ [0, 1] and j ≥ 1. However, one can check that
{fj}

∞
j=1 does not converge with respect to the L1 norm. To get a counterexample

corresponding to p = ∞, let {fj}∞j=1 be the sequence of functions on Z+ such
that fj(x) = 1 when x = 1 and when x = j, and fj(x) = 0 otherwise. This
sequence converges pointwise on Z+ to the function f(x) defined by f(1) = 1
and f(x) = 0 when x ≥ 2. Clearly fj is an element of c0(Z+) with supremum
norm equal to 1 for each j, and f is an element of c0(Z+) with supremum norm
equal to 1 as well. It follows that {fj}

∞
j=1 converges to f with respect to the

weak topology on c0(Z+) under these conditions, although {fj}∞j=1 does not
converge to f with respect to the supremum norm.

22 Weak compactness

Let V be a real or complex vector space with a norm ‖v‖, and let V ∗ be the
corresponding dual space, with the dual norm ‖λ‖∗. Also let B∗ be the closed
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unit ball in V ∗ with respect to ‖λ‖∗. Thus B∗ is compact with respect to the
weak∗ topology on V ∗, by the Banach–Alaoglu theorem. If V is separable,
then the topology induced on B∗ be the weak∗ topology on V ∗ is metrizable,
as in Section 11. This implies that there is a countable subset of B∗ which is
dense in B∗ with respect to the weak∗ topology, since compact metric spaces
are separable.

If V = ℓ1(Z+), for instance, then V is separable, but V ∗ ∼= ℓ∞(Z+) is not
separable with respect to the dual norm. Similarly, if V = C([0, 1]), then V
is separable with respect to the supremum norm, but V ∗ is not separable with
respect to the corresponding dual norm.

Let V be any real or complex vector space with a norm ‖v‖ again, and
suppose that A ⊆ V ∗ is a dense set in B∗ with respect to the weak∗ topology.
More precisely, it suffices to ask that the linear span of A be dense in V ∗ with
respect to the weak∗ topology. Under these conditions, it is easy to see that A
separates points in V . If A is countable, then it follows that the weak topology
on V determined by A is metrizable, as in Section 8. If V is separable, then
there is a countable set A ⊆ V ∗ with this property, as before.

If A ⊆ V ∗ separates points in V , then the weak topology on V associated to
A is Hausdorff. Suppose that E ⊆ V is compact with respect to the usual weak
topology on V , associated to V ∗. Because the weak topology on V associated
to A is weaker than the usual weak topology on V , it follows that the topology
induced on E by the weak topology on V is the same as the topology induced on
E by the weak topology on V associated to A. This implies that the topology
induced on E by the weak topology on V is metrizable when A is countable. In
particular, if V is separable, then there is a countable set A ⊆ V ∗ that separates
points in V , and hence the topology induced on E be the weak topology on V
is metrizable.

Let V be a real or complex vector space with a norm ‖v‖ again, which is
not necessarily separable. If W is a linear subspace of V which is closed with
respect to the topology determined by the norm, then it is well known that W
is also closed with respect to the weak topology on V , by the Hahn–Banach
theorem. If E ⊆ V is compact with respect to the weak topology on V , then
it follows that E ∩ W is compact with respect to the weak topology on V too.
This implies that E ∩ W is compact with respect to the weak topology on W
as well, because the weak topology on W is the same as the topology induced
on W by the weak topology on V , as mentioned previously. If W is separable,
then it follows that the topology on E ∩W induced by the weak topology on V
is metrizable, by the remarks in the preceding paragraph.

Suppose that E ⊆ V is compact with respect to the weak topology on V ,
and that {vj}

∞
j=1 is a sequence of elements of E. Let W be the closure of the

linear span of the vj ’s in V , with respect to the topology on V determined by
the norm. Thus W is separable by construction, so that the topology on E ∩W
induced by the weak topology on V is metrizable, as in the previous paragraph.
By construction, {vj}

∞
j=1 is a sequence of elements of E ∩W , and hence there is

a subsequence {vjl
}∞l=1 of {vj}∞j=1 that converges to an element v of E∩W with

respect to the weak topology on V , because E ∩ W is compact and metrizable
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with respect to the topology induced by the weak topology on V . This shows
that E ⊆ V is sequentially compact with respect to the weak topology on V
when E is compact with respect to the weak topology on V .

Consider the case where V = ℓ1(X) for some set X. If E ⊆ ℓ1(X) is compact
with respect to the weak topology on ℓ1(X), then E is sequentially compact
with respect to the weak topology on ℓ1(X), as in the preceding paragraph.
This implies that E is sequentially compact with respect to the topology on
ℓ1(X) determined by the norm, because every sequence in ℓ1(X) that converges
with respect to the weak topology also converges with respect to the norm, as
in Section 13. It follows that E is also compact with respect to the topology
on ℓ1(X) determined by the norm, because sequentially compact subsets of any
metric space are compact.

23 Closed sets

Let V be a real or complex vector space, and let Λ be a nonempty collection
of linear functionals on V . Suppose that v ∈ V is not in the closure of a set
E ⊆ V with respect to the weak topology on V determined by Λ. This means
that there are finitely many elements λ1, . . . , λn of Λ and a positive real number
r such that

max
1≤j≤n

|λj(v) − λj(w)| ≥ r(23.1)

for every w ∈ E. Let T be the linear mapping from V into Rn or Cn, as
appropriate, such that the jth component of T (u) is equal to λj(u) for every
u ∈ V . Note that T (v) is not an element of the closure of T (E) in Rn or Cn

under these conditions.
If E is a linear subspace of V , then T (E) is a linear subspace of Rn or Cn, and

hence T (E) is automatically a closed set in Rn or Cn. Because T (v) 6∈ T (E),
there is a linear functional µ on Rn or Cn such that µ ≡ 0 on T (E) and
µ(T (v)) 6= 0. Every linear functional on Rn or Cn is a linear combination of
the coordinate functions, which implies that

µ̃ = µ ◦ T(23.2)

is a linear combination of λ1, . . . , λn on V . It follows that µ̃ is a continuous
linear functional on V with respect to the weak topology on V determined by
Λ, µ̃ ≡ 0 on E, and µ̃(v) 6= 0.

Similarly, if E is a convex set in V , then T (E) is a convex set in Rn or
Cn. Because T (v) is not in the closure of T (E) in Rn or Cn, classical finite-
dimensional separation theorems can be applied to T (v) and T (E). This leads
to analogous separation properties of v and E in V , using linear functionals on
V that are continuous with respect to the weak topology associated to Λ.

Remember from Section 2 that a linear functional on V is continuous with
respect to the weak topology on V determined by Λ if and only if it can be
expressed as a linear combination of finitely many elements of Λ. The kernel of
any continuous linear functional on V is automatically a closed linear subspace

30



of V , and hence the intersection of the kernels of any family of continuous linear
functionals on V is also a closed linear subspace of V . If E is a linear subspace
of V , then the previous argument shows that the closure of E with respect to
the weak topology on V determined by Λ can be expressed as the intersection
of the kernels of the linear functionals on V that are continuous with respect to
this topology and vanish on E. In particular, a linear subspace E of V is dense
with respect to the weak topology on V corresponding to Λ if and only if the
only linear functional on V that is continuous with respect to this topology and
vanishes on E is identically 0 on V .

Suppose now that N is a nonempty collection of seminorms on V . If E is a
closed linear subspace of V with respect to the topology on V determined by N ,
and if v ∈ V \E, then the Hahn–Banach theorem can be used to show that there
is a continuous linear functional λ on V such that λ ≡ 0 on E and λ(v) 6= 0.
This implies that E can be expressed as the intersection of the kernels of a
collection of continuous linear functionals on V , and hence that E is a closed
set with respect to the corresponding weak topology on V . Similarly, if E is a
closed convex set in V with respect to the topology determined by N , then it
can be shown that E is also closed with respect to the weak topology on V .

Let V be a real or complex vector space with a norm ‖ · ‖, and let V ∗ be
the corresponding dual space. If E ⊆ V ∗ is dense in V ∗ with respect to the
weak∗ topology, then it is easy to see that E separates points in V . Of course,
this uses the fact that V ∗ separates points in V , by the Hahn–Banach theorem.
Conversely, if E is a linear subspace of V ∗ that separates points in V , then
the earlier argument implies that E is dense in V ∗ with respect to the weak∗

topology on V ∗. Indeed, the condition that E separate points in V is equivalent
to saying that if u ∈ V satisfies λ(u) = 0 for every λ ∈ E, then u = 0.

Let V ∗∗ be the dual of V ∗, and remember that Lv(λ) = λ(v) defines an
element of V ∗∗ for each v ∈ V . The collection E of elements of V ∗∗ of the form
Lv for some v ∈ V is a linear subspace of V ∗∗ that automatically separates points
in V ∗. It follows that E is dense in V ∗∗ with respect to the weak∗ topology on
V ∗∗ as the dual of V ∗, as in the preceding paragraph. As a refinement of this,
let A be the collection of elements of V ∗∗ of the form Lv for some v ∈ V with
‖v‖ ≤ 1. One can show that the closure of A in V ∗∗ with respect to the weak∗

topology on V ∗∗ as the dual of V ∗ is the same as the closed unit ball in V ∗∗.

References

[1] F. Albiac and N. Kalton, Topics in Banach Space Theory, Springer, 2006.

[2] G. Allan, Introduction to Banach Spaces and Algebras, prepared for publi-
cation and with a preface by H. Dales, Oxford University Press, 2011.

[3] G. Bachman and L. Narici, Functional Analysis, Dover, 2000.

[4] L. Baggett, Functional Analysis, Dekker, 1992.

31



[5] R. Bass, Real Analysis for Graduate Students: Measure and Integration

Theory, 2011. http://homepages.uconn.edu/˜rib02005/real.html.

[6] B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd edi-
tion, North-Holland, 1985.

[7] J. Benedetto and W. Czaja, Integration and Modern Analysis, Birkhäuser,
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