M624 HOMEWORK - SPRING 2025

Prof. Andrea R. Nahmod

SET 1 - DUE 02/13/2025

From Chapter 3 (pp 145-146 -Section 5): 11, 12, 14a), 15, 16a), 23a).

SET 2 - DUE 02/27/2025

From Chapter 3 (pp 145-146 -Section 5): 14b), 16b), 19, 23b), 32

From Chapter 3 (pp 153): 4

Additional Questions (Chapter 3): After you had read carefully –as assigned in class—the proofs of Lemma 3.3 and Theorem 3.14 do the following

- 1) Explain why $J_F(y) J_F(x) \leq \sum_{\{n: x < x_n \leq y\}} \alpha_n \leq F(y) F(x)$ (proof of Lemma 3.13).
- 2) Show rigorously that $J_F(x) F(x)$ is continuous (in proof of Lemma 3.13).
- 3) Rewrite explaining fully the proof of Theorem 3.14 in Chapter 3. Note you need to solve and use exercise 14 (given above in Chapter 3).
- 4) Justify the step (†) left in class in the proof of Lemma 3.9. More precisely. Justify why assuming that for $\delta > 0$ sufficiently small $m(E) > \delta$ we have that:
 - a) For an appropriate compact $E' \subseteq E$ we have that $m(E') \ge \delta$ and
- b) How Lemma 1.2 (first Vitali-type covering Lemma) gives you that from a finite covering of E' (using compactness) by balls in \mathcal{B} one can select a <u>disjoint</u> sub-collection of these balls, (call them $B_1, B_2, \ldots, B_{N_1}$) such that $\sum_{i=1}^{N_1} .m(B_i) \geq 3^{-d}m(E') \geq 3^{-d}\delta$. In other words, justify the two inequalities.

SET 3 - DUE 03/13/2025

From Chapter 4: Read carefully the proofs of both Theorem 2.2 (Riesz-Fisher) on Chaper 2 (p. 70) and then the one for Theorem 1.2 Chapter 4 (p. 159) from Stein-Shakarchi.

Additional Problem: For any $1 \le p < \infty$ consider the space

$$L^p(\mathbb{R}^d) := \{ f : \mathbb{R}^d \to \mathbb{C}, \text{ measurable, } : \|f\|_{L^p(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |f(x)|^p \, dm \right)^{\frac{1}{p}} < \infty \}.$$

Assume that $||f||_{L^p(\mathbb{R}^d)}$ is a norm[†] whence $d_p(f,g) := ||f-g||_{L^p(\mathbb{R}^d)}$ defines a metric and L^p is a metric space. Use the proof of completeness that I gave in class from Folland when p=2 to **prove** that $L^p(\mathbb{R}^d)$ is *complete*.

† Aside challenge: can you guess what would you need to prove the triangle inequality when $p \neq 2$?,

From Chapter 4 (pp 193-194): 1, 2*, 3, 4 (show completeness only), 5, 6a), 7, 8a), 10. * to show that f - g is orthogonal to g you need to show that $\langle f - g, g \rangle = 0$.

Pb.I. Consider $f \in L^2([-\pi, \pi])$ and <u>assume</u> that $\sum_{n \in \mathbb{Z}} a_n e^{inx} = f(x)$ a.e. x. Show that on any subinterval $[a, b] \subset [-\pi, \pi]$,

$$\int_a^b f(x) dx = \sum_n \int_a^b a_n e^{inx} dx.$$

In particular if $g(x) = \int_a^x f(y)dy$, the Fourier coefficients and series of g(x) can be obtained from a_n , the Fourier coefficients of f.

Pb. II. For $0 < \alpha < 1$, we say that a function f is C^{α} -Hölder continuous with exponent α if there exists a constant $c = c_{\alpha} > 0$ such that $|f(x) - f(y)| \le c |x - y|^{\alpha}$ for all x, y. For $k \in \mathbb{N}$, we can also define the space $C^{k,\alpha}$ to be that of functions which are k-th times differentiable and whose k-th derivative is C^{α} -Hölder continuous (we could relabel C^{α} as $C^{0,\alpha}$). Consider now f a 2π -periodic $C^{k,\alpha}$ function. If a_n are the Fourier coefficients of f, show that for some C > 0 independent of n,

$$|a_n| \le \frac{C}{|n|^{k+\alpha}}$$

<u>Bonus Problem</u>: 2*a)b) from Chapter 4, pp 202.

From Chapter 4 (pp 195-197): 11, 12, 13

Pb. I. Consider the subspace S of $L^2([0,1])$ spanned by the functions: 1, x, and x^3 .

- a) Find an orthonormal basis of \mathcal{S} .
- b) Let $P_{\mathcal{S}}$ denote the orthogonal projection on the subspace \mathcal{S} , compute $P_{\mathcal{S}}x^2$.
- **Pb. II.** (This is an undergrad. problem but a very useful property to remember) Let $\phi : \mathbb{R} \to \mathbb{R}$ be a periodic function with period p; that is $\phi(x+p) = \phi(x)$, $\forall x \in \mathbb{R}$. Assume that ϕ is integrable on any finite interval.

(a) Prove that for any $a, b \in \mathbb{R}$

$$\int_{a}^{b} \phi(x)dx = \int_{a+p}^{b+p} \phi(x)dx = \int_{a-p}^{b-p} \phi(x)dx$$

(b) Prove that for any $a \in \mathbb{R}$

$$\int_{-n/2}^{p/2} \phi(x+a)dx = \int_{-n/2}^{p/2} \phi(x)dx = \int_{-n/2+a}^{p/2+a} \phi(x)dx$$

In particular we have that $\int_a^{a+p} \phi(x) dx$ does not depend on a, as we discussed in class.

Assigned Reading from Chapter 4 of [Stein-Shakarchi Vol 3]:

- a) Examples 1) and 2). on pages 178–180.
- b) We will cover subsection ections 4.5.1 and 4.5.2 of section 5 chapter 4 in class but subsection 4.5.3 pages 185–188 is assigned reading. It is an important subsection. Please read ahead!

From Chapter 4 (pp 195-197): 18, 19, 20

Assigned Reading (in class) from Chapter 4 of [Stein-Shakarchi Vol 3]: Remarks (a), (b), (c) on pages 184-185.

Then turn in:

From Chapter 4 (pp 187): Read and rewrite filling in all details the Proof of Proposition 5.5.

From Chapter 4 (pp 189): Read and rewrite filling in all details the Proof of Proposition 6.1.

From Chapter 4 (pp 197-202): 21, 22, 23, 25, 26, 28.

From Chapter 4 (pp 197-202): 30, 32, 33.

<u>Bonus Problems</u>: 29^* (p. 199-200) and 6^* (p. 203-204). These are about Fredholm's Alternative for compact operators.

SET 7 - DUE 05/08/2025

From Chapter 5 (pp 253-255): 1, 9. See definition, examples and hints below.

<u>Definition</u>: A Fourier multiplier operator T on \mathbb{R}^d is a linear operator on $L^2(\mathbb{R}^d)$ determined by a bounded function m (the multiplier) such that T is defined by the formula

$$\widehat{T(f)}(\xi) := m(\xi)\widehat{f}(\xi)$$

for all $\xi \in \mathbb{R}^d$ and any $f \in L^2(\mathbb{R}^d)$.

Examples. The bounded linear operator $P_N: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined by $\widehat{P_N(f)}(\xi) := \chi_{[-N,N]}(\xi) \widehat{f}(\xi)$ is one such operator. In fact is an orthogonal projection.

Another well known one is the *Hilbert Transform* $\mathcal{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined by $\widehat{\mathcal{H}(f)}(\xi) := -isgn(\xi)\,\widehat{f}(\xi)$. The operator \mathcal{H} is bounded and linear on L^2 . That is bounded foillows from the fact that $-isgn(\xi)$ is bounded point-wise by 1 and Theorem 1.1 that says the Fourier transform is unitary on $L^2(\mathbb{R}^d)$

<u>Hints for 1</u>) Note that a) follows from b) since if a function is in L^2 then it is finite a.e. (in fact you get that $\int |f(x-y)k(y)|dy$ is finite a.e. x.) so prove b) first. Then for c) first prove it for functions in $L^1 \cap L^2$. Then use a density argument: given $f \in L^2$ assume the sequence $f_n \in L^1 \cap L^2$ approximates f in the L^2 sense (L^2 -norm). Then bound $|\widehat{f*k}(\xi) - \widehat{f_n*k}(\xi)|$ by $||f_n - f||_{L^2}||k||_{L^1}$ and conclude from here. Finally part d) is the definition of a Fourier multiplication operator applied to part c)

Additional Problem Carefully read and rewrite on your own (justifying and filling the gaps as necessary) Lemma 1.2 on page 209 proving that $\mathcal{S}(\mathbb{R}^d)$ is dense in $L^2(\mathbb{R}^d)$

From Chapter 6: Read/Study the proofs in Section 1.

From Chapter 6 (pp 312 313): 1 (change \mathcal{M} to be a non-empty algebra); 10.